Determinación de hongos y sus aflatoxinas en huevos embrionados en un lote de producción
Palabras clave:
Micotoxinas, Aflatoxinas, Huevo embronadoResumen
Se determinó la carga fúngica de origen y la presencia de aflatoxinas en un lote de producción de huevo embrionado, para ello se sembraron alícuotas de medio de disolución tras un frotado suave de las cascaras de huevo de un lote, se incubaron y se realizó la cuantificación de la carga fúngica total de origen. Posteriormente se determinó la presencia de alguna de las cuatro aflatoxinas principales (B1, B2, G1 y G2) empleando el método de ELISA siguiendo las recomendaciones del kit. Todos los huevos embrionados tuvieron presencia de hongo, las cargas fúngicas variaron entre 100 y 10 520 UFM/huevo. El 76 % (38/50) de las muestras resultaron positivas a alguna de las cuatro aflatoxinas principales y la estimación de la concentración de aflatoxinas fue de 5.4 ± 2.9 µg/huevo. Se logró evidenciar el compromiso de la calidad e inocuidad del alimento, tanto para consumo humano o animal, o para la producción animal, ya que existen evidencias de la alta mortalidad embrionaria que generan las micotoxinas que logran ingresar al huevo, además, se hace evidente la necesidad de desarrollar estrategias “orgánicas” para el control fúngico en la cáscara del huevo embrionado.
Citas
Alaniz-De La O, R., Juan-Morales, A. L. & Rosas-Barbosa, B. T. 2016. Egg. In: Torres-Vitela, M. R. 2016. Food safety (Seguridad alimentaria). Ed. Universidad de Guadalajara. p. 187-204.
Alizadeh, A. M., Hashempour-Baltork, F., Khaneghah, A. M., & Hosseini, H. 2020. New perspective approaches in controlling fungi and mycotoxins in food using emerging and green technologies. Current Opinion in Food Science. https://doi.org/10.1016/j.cofs.2020.12.006
Alonso, V. A., Pereyra, C. M., Keller, L. A. M., Dalcero, A. M., Rosa, C. A. R., Chiacchiera, S. M., & Cavaglieri, L. R. 2013. Fungi and mycotoxins in silage: An overview. Journal of Applied Microbiology, 115(3), 637-643. https://doi.org/10.1111/jam.12178
Bunker, M. E., Elliott, G., Heyer-Gray, H., Martin, M. O., Arnold, A. E., & Weiss, S. L. 2021. Vertically transmitted microbiome protects eggs from fungal infection and egg failure. Animal microbiome, 3(1), 1-13. https://link.springer.com/article/10.1186/s42523-021-00104-5
Chousalkar, K. K., Khan, S., & McWhorter, A. R. 2020. Microbial quality, safety and storage of eggs. Current Opinion in Food Science, 38, 91-95. https://doi.org/10.1016/j.cofs.2020.10.022
Egbuta, M. A., Mwanza, M., & Babalola, O. O. 2017. Health risks associated with exposure to filamentous fungi. International Journal of Environmental Research and Public Health, 14(7),719. https://doi.org/10.3390/ijerph14070719
Escrivá, L., Font, G., Manyes, L., Berrada, H. 2017. Studies on the presence of mycotoxins in biological samples: An overview. Toxins 9, 251. https://doi.org/10.3390/toxins9080251
Peivasteh-Roudsari, L., Pirhadi, M., Shahbazi, R., Eghbaljoo-Gharehgheshlaghi, H., Sepahi, M., Mirza-Alizadeh, A. & Jazaeri, S. 2021. Mycotoxins: Impact on health and strategies for prevention and detoxification in the food chain. Food Reviews International, 1-32. https://doi.org/10.1080/87559129.2020.1858858
Flórez-Valencia, J. S. 2020. Comparison of productive parameters of laying hens from two poultry farms of the same company, with the genetic house management guide (Doctoral dissertation, Lasallian University Corporation).
Gros, R. V., Nichita, I., Șereș, M., Ilie, M. S., Marcu, A., Cucerzan, A., Tîrziu, E. 2015. Study of the fungi dynamics in a poultry house with permanent litter. Lucr. St. Med. Vet. 48, 2572–2662.
Manders, T. T. M., Matthijs, M. G. R., Veraa, S., van Eck, J. H. H., & Landman, W. J. M. 2021. Success rates of inoculation of the various compartments of embryonated chicken eggs at different incubation days. Avian Pathology, 50(1), 61-77. https://doi.org/10.1080/03079457.2020.1834503
Magan, N., & Olsen, M. (Eds.). 2004. Mycotoxins in food: Detection and control. Woodhead Publishing.
Neira-Solís, C. 2016. Microbiota in eggs and derivatives: identification and development (Master's Degree Dissertation in Food Biotechnology. Oviedo University).
Nyholm, S. V. 2020. In the beginning: Egg–microbe interactions and consequences for animal hosts. Philosophical Transactions of the Royal Society B, 375(1808), 20190593. https://doi.org/10.1098/rstb.2019.0593
Ogunbanwo, S. T., Sanni, A. I., & Onilude, A. A. 2003. Influence of cultural conditions on the production of bacteriocin by Lactobacillus brevis OG1. African Journal of Biotechnology, 2(7),179-184. https://www.ajol.info/index.php/ajb/article/view/14779
Prapagdee, B., Kuekulvong, C., & Mongkolsuk, S. 2008. Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. International Journal of Biological Sciences, 4(5),330. https://doi.org/10.7150/ijbs.4.330
Piskorska-Pliszczynska, J.; Mikolajczyk, M.; Warenik-Bany, M.; Maszewski, S.; Strucinski, P. 2014. Soil as a source of dioxin contamination in eggs from free-range hens on a Polish farm. Sci. Total Environ. 145, 435–436. https://doi.org/10.1016/j.scitotenv.2013.07.061
Ráduly, Z., Szabó, L., Madar, A., Pócsi, I., & Csernoch, L. 2020. Toxicological and medical aspects of Aspergillus-derived mycotoxins entering the feed and food chain. Frontiers in microbiology, 10, 2908. https://doi.org/10.3389/fmicb.2019.02908
Rodríguez Orozco, A. R., Vargas Villegas, E., Tafolla Muñoz, L., Ruiz Reyes, H., Hernández Chávez, L. A., & Vázquez Garcidueñas, S. 2008. Fungal genera isolated from patients with allergic rhinitis and their relationship with the subcutaneous prick hypersensitivity test. Revista mexicana de micología, 28(SPE), 89-94. http://www.scielo.org.mx/scielo.php?pid=S0187-31802008000300011&script=sci_abstract&tlng=en
SCIENCE. 2021. Course Hero. Relative humidity values using saturated salts. University of Texas. Retrieved the; 08/18/2021. Available at: https://www.coursehero.com/file/p4r2pu8k/Tabla-2-Valores-de-humedad-relativa-usando-sales-saturadas-valores-tomados-de/
Shah, P. A., & Pell, J. K. 2003. Entomopathogenic fungi as biological control agents. Applied Microbiology and Biotechnology, 61(5), 413-423. https://link.springer.com/article/10.1007/s00253-003-1240-8?LI=true>
Smaoui, S., Elleuch, L., Bejar, W., Karray-Rebai, I., Ayadi, I., Jaouadi, B. & Mellouli, L. 2010. Inhibition of fungi and gram-negative bacteria by bacteriocin BacTN635 produced by Lactobacillus plantarum sp. TN635. Applied Biochemistry and Biotechnology, 162(4), 1132-1146. https://link.springer.com/article/10.1007/s12010-009-8821-7
Szablewski, T., Stuper, K., Cegielska-Radziejewska, R., Kijowski, J., Perkowski, J. 2010. Ergosterol as an indicator of the presence of microscopic fungi in eggs for human consumption produced in different husbandry systems. Poult. Sci. 89, 2491–2493. https://doi.org/10.3382/ps.2009-00366
Takaya, N. 2002. Dissimilatory nitrate reduction metabolisms and their control in fungi. Journal of Bioscience and Bioengineering, 94(6), 506-510. https://doi.org/10.1016/S1389-1723(02)80187-6
Thines, E., Heidrun, A. N. K. E., & Weber, R. W. 2004. Fungal secondary metabolites as inhibitors of infection-related morphogenesis in phytopathogenic fungi. Mycological research,108(1),14-25. https://doi.org/10.1017/S0953756203008943
Tomczyk Ł, Stępień Ł, Urbaniak M, Szablewski T, Cegielska-Radziejewska R, Stuper-Szablewska K. 2018. Characterization of the mycobiota on the shell surface of table eggs acquired from different egg-laying hen breeding systems. Toxins 10(7):293. https://doi.org/10.3390/toxins10070293
Weaver, A. C., Adams, N., & Yiannikouris, A. 2020. Invited Review: Use of technology to assess and monitor multimycotoxin and emerging mycotoxin challenges in feedstuffs. Applied Animal Science, 36(1), 19-25. https://doi.org/10.15232/aas.2019-01898