Development of a system for the detection of cutaneous leishmaniasis using artificial intelligence

Authors

  • Heber Armando Pabón Conde Universidad de Pamplona, Colombia.
  • Ivaldo Torres Chávez Universidad de Pamplona, Colombia
  • Mayra Yurley Parada Botía Universidad de Pamplona, Colombia
  • Cristhian Manuel Durán Acevedo Universidad de Pamplona, Colombia

Keywords:

Cutaneus leishmaniasis, early detection, artificial intelligence, image processing

Abstract

Leishmaniasis is a parasitic disease spread by the bite of infected mosquitoes of the Lutzomyia genus. Colombia is considered one of the Latin American countries with a high incidence of this, with Cutaneous Leishmaniasis being the most common form, representing a public health problem. , since their lesions can vary widely in appearance and characteristics, making their diagnosis and identification difficult. Currently, there is a need to create a database that documents the lesions of the disease and the history of the affected population in the Norte de Santander department, which is why it is necessary to establish new detection techniques and preliminary diagnosis of the disease. Because conventional techniques may present limitations in terms of sensitivity, specificity and ease of use. This proposal is aimed at the development and implementation of a system for detecting the disease by applying artificial intelligence techniques that can play a role in the early identification of Cutaneous Leishmaniasis, by analyzing the digital signals of skin lesions, and In this way, with the help of the web application created, contribute to the processing and storage of information about this disease, to finally be able to validate the reliability of the learning system through laboratory tests.

 

References

S. H. Park y K. Han, «Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction», Radiology, vol. 286, n.o 3, pp. 800-809, mar. 2018, doi: 10.1148/radiol.2017171920.

Y. Mintz y R. Brodie, «Introduction to artificial intelligence in medicine», Minimally Invasive Therapy & Allied Technologies, vol. 28, n.o 2, pp. 73-81, mar. 2019, doi: 10.1080/13645706.2019.1575882.

L. L. Robert y M. Debboun, «146 - Arthropods of Public Health Importance», en Hunter’s Tropical Medicine and Emerging Infectious Diseases (Tenth Edition), E. T. Ryan, D. R. Hill, T. Solomon, N. E. Aronson, y T. P. Endy, Eds., London: Elsevier, 2020, pp. 1055-1062. doi: 10.1016/B978-0-323-55512-8.00146-0.

K. Rossanet et al., «Panorama de enfermedades tropicales desatendidas durante la pandemia COVID-19 (Divulgación)», Bioagrociencias, vol. 15, jun. 2022, doi: 10.56369/BAC.4353.

K. Ganasegeran y S. A. Abdulrahman, «Artificial Intelligence Applications in Tracking Health Behaviors During Disease Epidemics», en Human Behaviour Analysis Using Intelligent Systems, D. J. Hemanth, Ed., en Learning and Analytics in Intelligent Systems. Cham: Springer International Publishing, 2020, pp. 141-155. doi: 10.1007/978-3-030-35139-7_7.

M. Zare et al., «A Machine Learning-Based System for Detecting Leishmaniasis in Microscopic Images», In Review, preprint, ago. 2021. doi: 10.21203/rs.3.rs-677539/v1.

R. A. Salinas Franco et al., «Descriptores MAC en la detección temprana del cáncer cervical usando técnicas de procesamiento de imágenes», Revista Cubana de Ciencias Informáticas, vol. 16, n.o 1, pp. 1-16, mar. 2022.

D. Castillo Berná, «Redes neuronales convolucionales para el reconocimiento de enfermedades de la piel», Convolutional neural networks for skin diseases recognition, jun. 2022, Accedido: 13 de julio de 2023. [En línea]. Disponible en: https://riuma.uma.es/xmlui/handle/10630/25139

A. A. Angulo Gastelbondo, «Aplicación de una técnica de aprendizaje profundo de identificación de objetos en el análisis de imágenes histológicas de piel humana normal», 2022, Accedido: 13 de julio de 2023. [En línea]. Disponible en: https://repositorio.unbosque.edu.co/handle/20.500.12495/9410

S. A. Machuca Vivar et al., «Habeas data y protección de datos personales en la gestión de las bases de datos», Revista Universidad y Sociedad, vol. 14, n.o 2, pp. 244-251, abr. 2022.

G. M. Tejada Layme y R. P. Gonzales Chama, «Arquitectura de red neuronal convolucional para diagnóstico de cáncer de piel», Universidad Tecnológica del Perú, 2020, Accedido: 14 de julio de 2023. [En línea]. Disponible en:http://repositorio.utp.edu.pe/handle/20.500.12867/3043

P. Valeiro Pena, «Aplicación de técnicas de Visión Artificial en la detección de estructuras anatómicas en imágenes médicas de rodilla», 2021, Accedido: 14 de julio de 2023. [En línea]. Disponible en: https://ruc.udc.es/dspace/handle/2183/29840

H. Singh, «Basics of Python and Scikit Image», en Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python, H. Singh, Ed., Berkeley, CA: Apress, 2019, pp. 29-61. doi: 10.1007/978-1-4842-4149-3_3.

C. R. Harris et al., «Array programming with NumPy», Nature, vol. 585, n.o 7825, Art. n.o 7825, sep. 2020, doi: 10.1038/s41586-020-2649-2.

Z. Wang, K. Liu, J. Li, Y. Zhu, y Y. Zhang, «Various Frameworks and Libraries of Machine Learning and Deep Learning: A Survey», Arch Computat Methods Eng, feb. 2019, doi: 10.1007/s11831-018-09312-w.

Á.-J. Rico-Díaz, «An Application of Fish Detection Based on Eye Search with Artificial Vision and Artificial Neural Networks», 2020.

S. Dome y A. P. Sathe, «Optical Charater Recognition using Tesseract and Classification», en 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), mar. 2021, pp. 153-158. doi: 10.1109/ESCI50559.2021.9397008.

M. A. Al-masni, D.-H. Kim, y T.-S. Kim, «Multiple skin lesions diagnostics via integrated Deep convolutional networks for segmentation and classification», Computer Methods and Programs in Biomedicine, vol. 190, p. 105351, jul. 2020, doi: 10.1016/j.cmpb.2020.105351.

Z. Wang, E. Wang, y Y. Zhu, «Image segmentation evaluation: a survey of methods», Artif Intell Rev, vol. 53, n.o 8, pp. 5637-5674, dic. 2020, doi: 10.1007/s10462-020-09830-9.

E. M. Senan y M. E. Jadhav, «Analysis of dermoscopy images by using ABCD rule for early detection of skin cancer», Global Transitions Proceedings, vol. 2, n.o 1, pp. 1-7, jun. 2021, doi: 10.1016/j.gltp.2021.01.001.

G. I. Viera Maza, «Procesamiento de imágenes usando OpenCV aplicado en Raspberry Pi para la clasificación del cacao», Universidad de Piura, jul. 2017, Accedido: 18 de julio de 2023. [En línea]. Disponible en: https://pirhua.udep.edu.pe/handle/11042/2916

M. H. Metib, M. F. Abdulhssien, y A. A. Abdulmunem, «Skin Dermatitis Detection using Image Segmentation Techniques», IOP Conf. Ser.: Mater. Sci. Eng., vol. 928, n.o 3, p. 032018, nov. 2020, doi: 10.1088/1757-899X/928/3/032018.

O. O. Olugbara, T. B. Taiwo, y D. Heukelman, «Segmentation of Melanoma Skin Lesion Using Perceptual Color Difference Saliency with Morphological Analysis», Mathematical Problems in Engineering, vol. 2018, p. e1524286, feb. 2018, doi: 10.1155/2018/1524286.

T. Saba, «Computer vision for microscopic skin cancer diagnosis using handcrafted and nonhandcrafted features», Microscopy Research and Technique, vol. 84, n.o 6, pp. 1272-1283,2021, doi: 10.1002/jemt.23686

N. F. Lattoofi et al., «Melanoma Skin Cancer Detection Based on ABCD Rule», en 2019 First International Conference of Computer and Applied Sciences (CAS), dic. 2019, pp. 154-157. doi: 10.1109/CAS47993.2019.9075465.

M. Goyal, A. Oakley, P. Bansal, D. Dancey, y M. H. Yap, «Skin Lesion Segmentation in Dermoscopic Images With Ensemble Deep Learning Methods», IEEE Access, vol. 8, pp. 4171-4181, 2020, doi: 10.1109/ACCESS.2019.2960504.

D. N. H. Thanh, V. B. S. Prasath, L. M. Hieu, y N. N. Hien, «Melanoma Skin Cancer Detection Method Based on Adaptive Principal Curvature, Colour Normalisation and Feature Extraction with the ABCD Rule», J Digit Imaging, vol. 33, n.o 3, pp. 574-585, jun. 2020, doi: 10.1007/s10278-019-00316-x.

G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, y B. Catanzaro, «Image Inpainting for Irregular Holes Using Partial Convolutions». arXiv, 15 de diciembre de 2018. doi: 10.48550/arXiv.1804.07723.

D. R. Sarvamangala y R. V. Kulkarni, «Convolutional neural networks in medical image understanding: a survey», Evol. Intel., vol. 15, n.o 1, pp. 1-22, mar. 2022, doi: 10.1007/s12065-020-00540-3.

E. Montero-Zeledón, M. A. Murillo-Fernández, L. A. Calvo-Valverde, J. E. Pérez Hidalgo, y D. Gutiérrez-Fallas, «Análisis de imágenes y cuantificación del color para el diagnóstico del cáncer de piel tipo melanoma en Costa Rica», may 2022, Accedido: 18 de julio de 2023. [En línea]. Disponible en: https://repositoriotec.tec.ac.cr/handle/2238/13873

A. D. Altuve Mouthon y E. E. Colón Muñoz, «Modelo de predicción de detección de melanomas a partir de características en imágenes de lesiones cutáneas», Thesis, Universidad del Sinú, seccional Cartagena, 2021. Accedido: 18 de julio de 2023. [En línea]. Disponible en: http://repositorio.unisinucartagena.edu.co:8080/xmlui/handle/123456789/459

Published

2023-10-31

How to Cite

Pabón Conde, H. A. ., Torres Chávez, I. ., Parada Botía, M. Y. ., & Durán Acevedo, C. M. . (2023). Development of a system for the detection of cutaneous leishmaniasis using artificial intelligence. Journal of Microbiology &Amp; Health Education, 5(3), 443–451. Retrieved from http://journalmhe.org/ojs3/index.php/jmhe/article/view/69

Issue

Section

ORIGINAL ARTICLE